PHYLUM *ECTOPROCTA*

Depending on time, they are sometimes taught in the pseudocoelomate lab, at other times in the Annelid, eucoelomate lab.

They are a conundrum having some protostomous characteristics and some deuterostomous features. For our purposes they will be considered protostomes and pseudocoelomates, based on molecular evidence.

<u>Gelatinous</u>, Encrusting & Plant like forms

Bird's nest or fur ball? Nous, Encrusting

Freshwater vs. Marine

Basic Bryozoan Body Plan

Statoblasts

Bryozoa

Freshwater Bryozoa

Gelatinous <u>zooecium</u> = red in the specimens we studied in lab.

Have statoblasts (black blobs) for surviving through the winter.

Monomorphic = Zooids all the same

Recap: Name the feeding zooid of a Hydrozoan

Phylum Bryozoa

Freshwater Form Note: lophophore (A) (u-shaped feeding structure) on the zooid

Plant Forms

Encrusting Forms

Both forms shown here are marine.

Make sure you can distinguish this from the Hydrozoan

Lophophore is circular

Plant like, colonial and polymorphic (zooids have different forms for different functions)

Name the Bryozoan zooids

Avicularia – for defense & perhaps food capture.

Vibracula - keep colony free of debris and settling organisms.

Marine Form Excellent example of polymorphism They have autozooids for basic feeding and modified zooids for other functions.